3D Shape Classification Based on Spectral Function and MDS Mapping
نویسندگان
چکیده
This paper reports a new method for 3D shape classification. Given a 3D shape M, we first define a spectral function at every point on M that is a weighted summation of the geodesics from the point to a set of curvature-sensitive feature points on M. Based on this spectral field, a real-valued square matrix is defined that correlates the topology (the spectral field) with the geometry (the maximum geodesic) of M, and the eigen values of this matrix are then taken as the fingerprint of M. This fingerprint enjoys several favorable characteristics desired for 3D shape classification, such as high sensitivity to intrinsic features on M (because of the feature points and the correlation) and good immunity to geometric noise on M (because of the novel design of the weights and the overall integration of geodesics). As an integral part of the work, we finally apply the classical Multidimensional Scaling method to the fingerprints of the 3D shapes to be classified. In all, our classification algorithm maps 3D shapes into clusters in a Euclidean plane that possess high fidelity to intrinsic features – in both geometry and topology – of the original shapes. We demonstrate the versatility of our approach through various classification examples.
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملMicro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation
Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملMapping spatial variability of soil salinity in a coastal area located in an arid environment using geostatistical and correlation methods based on the satellite data
Saline lakes can increase the soil and water salinity of the coastal areas. The main aim of this study is to distinguish the characteristics of the spectral reflectance of saline soil, analyze the statistical relationship between soil EC and characteristics of the spectral reflectance of saline soil, and to map soil salinity east of the Maharloo Lake. The correlation between field measurements ...
متن کامل